

Outline

- Water Budget Components
- Tables & Figures
- Irrigated Lands Changes

Water Budget Components (jump live to Web)

Tables and Figures

Changes in Irrigated Acreage

- Last time there was some discussion about whether year-to-year changes made sense
- IDWR asked IWRRI to take another look

1) Map year-to-year changes in acreage, by water source

Blue = SW
White = Mix
Yellow = GW
(Best estimate of actual; not model)

2) Generate random sample

3) Obtain year-2000 and year-2004 images (no 2002 avail).

4) Compare 2000 and 2002 rasters on SW-irrigated parcels

12

5) Attribute Cause of Difference

- Non-irrigated inclusions
- Change in Land Use/Land Cover
- Change in irrigation status
- Difference in wetlands & urban exclusions

	SCAN THIS!						
Cel	RED	20	IS.	w/u	U Dacres		
1074033	111				4-40		
1084058	111				+1-40		
1027016			111		+1-40		
1074157			111		1-40		
1186061	1		11 (40/400	4/2 4/2		

Table 4 Summary of results percentage of differences attributed to various factors

Data Set	Non- irrigated inclusions	Land use/land cover	Irrigation status	Wetland/ urban
Ten random cells, no acreage restriction	67%		30%	
20 random cells, difference > 80 acres	12%	12%	56%	20%
Ten random cells, difference > 160 acres	3%		17%	80%

Table 4
Summary of results percentage of differences attributed to
various factors

Data Set	Non- irrigated inclusions	Land use/land cover	Irrigation status	Wetland/ urban
Ten random cells, no acreage restriction	67%		30%	
20 random cells, difference > 80 acres	12%	12%	56%	20%
Ten random cells, difference > 160 acres	3%		17%	80%

Conclusions

- Many of the differences make sense
 - changes in field geometry
 - changes in irrigation status

Conclusions

- The 2002 data set appears to exclude wetlands/urban areas that were not masked in the 2000 data set
 - 2006 is probably similar to 2002 (same methods & data types)
 - 1980-1992 is probably similar to 2000 (same wetlands/urban mask)

Conclusions

- It is reasonable that both effects would show up most in SW lands
 - SW lands nearer towns & wetlands
 - SW lands nearer areas of development & change
 - SW lands more likely to have been converted to sprinkler (by 2000 GW was already converted)

Recommendations

- ESPAM2.0
 - Difference is too small to justify ESPAM2 adjustment (6% difference & some of this appears to be real)

Recommendations

- ESPAM.next
 - New urban mask
 - Move from traditional to METRIC ET?
 - Keep traditional ET?
 - New wetlands mask
 - New RED with larger sample sizes
 - Use CLU polygons instead of hand-drawn for all parcels?
 - note this may bias towards sprinklers in earlier data sets

Great Feeder headgate. These are undershot clamshell gates. All are <u>closed</u> but one.